If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x-7.9=0
a = 3; b = 15; c = -7.9;
Δ = b2-4ac
Δ = 152-4·3·(-7.9)
Δ = 319.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{319.8}}{2*3}=\frac{-15-\sqrt{319.8}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{319.8}}{2*3}=\frac{-15+\sqrt{319.8}}{6} $
| 24-6x=30-3x | | 3m=5(m+3)-7 | | 12-15x=-2 | | 5x-5+7x-4=135 | | 3(x-2)+(2x+3)=(2x+6) | | 2.12x+-25.9=76.07 | | -6+7x+50=-4+13x | | -5(x-7)=45 | | 3x2-3=-5x | | 25^(x-2)=125^(2x+4) | | 39+3x+2=8x+6 | | 29x-2+4+8x=150 | | 3(2x-7)+2=2(5-x) | | 6x−4=6x+2(2x−10) | | u-8=4.47 | | 2.12x+-25.9=30.63 | | k3-13k=-7-15k2 | | 12(n+1)-8=8(n+8)+8 | | 4÷7b=-5÷21 | | 1.7d+2.4=1.2d−3.9 | | H=-9t^2+27t | | 7x-9=12x= | | 2.12*x+-25.9=30.63 | | (3/4)x+1=4 | | 8x+7−2x=49 | | (3x-6)=2x+6 | | 3m=5m-5/5 | | 48x+5=25x-2+76 | | k(3)-13k=7-5k(2) | | 12(n+1)-8=(n+8)+8 | | 25x-2=48x+5+76 | | 3x-87=3 |